Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)Spatial evolutionary games are used to model large systems of interacting agents. In earlier work, a method was developed using Bayesian Networks to approximate the population dynamics in these games. One advantage of that approach is that one can smoothly adjust the size of the network to get more accurate approximations. However, scaling the method up can be intractable if the number of strategies in the evolutionary game increases. In this paper, we propose a new method for computing more accurate approximations by using surrogate Bayesian Networks. Instead of doing inference on larger networks directly, we do it on a much smaller surrogate network extended with parameters that exploit the symmetry inherent to the domain. We learn the parameters on the surrogate network using KL-divergence as the loss function. We illustrate the value of this method empirically through a comparison on several evolutionary games.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)Spatial evolutionary games are used to model large systems of interacting agents. In earlier work, a method was developed using Bayesian Networks to approximate the population dynamics in these games. One advantage of that approach is that one can smoothly adjust the size of the network to get more accurate approximations. However, scaling the method up can be intractable if the number of strategies in the evolutionary game increases. In this paper, we propose a new method for computing more accurate approximations by using surrogate Bayesian Networks. Instead of doing inference on larger networks directly, we do it on a much smaller surrogate network extended with parameters that exploit the symmetry inherent to the domain. We learn the parameters on the surrogate network using KL-divergence as the loss function. We illustrate the value of this method empirically through a comparison on several evolutionary games.more » « less
-
Camps-Valls, Gustau; Ruiz, Francisco J.; Valera, Isabel (Ed.)Bayesian Networks are useful for analyzing the properties of systems with large populations of interacting agents (e.g., in social modeling applications and distributed service applications). These networks typically have large functions (CPTs), making exact inference intractable. However, often these models have additive symmetry. In this paper we show how summation-based CPTs, especially in the presence of symmetry, can be computed efficiently through the usage of the Fast Fourier Transform (FFT). In particular, we propose an efficient method using the FFT for reducing the size of Conditional Probability Tables (CPTs) in Bayesian Networks with summation-based causal independence (CI). We show how to apply it directly towards the acceleration of Bucket Elimination, and we subsequently provide experimental results demonstrating the computational speedup provided by our method.more » « less
An official website of the United States government

Full Text Available